YES 0.856 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/Monad.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ LR

mainModule Monad
  ((replicateM_ :: Int  ->  Maybe a  ->  Maybe ()) :: Int  ->  Maybe a  ->  Maybe ())

module Monad where
  import qualified Maybe
import qualified Prelude

  replicateM_ :: Monad a => Int  ->  a b  ->  a ()
replicateM_ n x sequence_ (replicate n x)


module Maybe where
  import qualified Monad
import qualified Prelude



Lambda Reductions:
The following Lambda expression
\_→q

is transformed to
gtGt0 q _ = q



↳ HASKELL
  ↳ LR
HASKELL
      ↳ BR

mainModule Monad
  ((replicateM_ :: Int  ->  Maybe a  ->  Maybe ()) :: Int  ->  Maybe a  ->  Maybe ())

module Maybe where
  import qualified Monad
import qualified Prelude


module Monad where
  import qualified Maybe
import qualified Prelude

  replicateM_ :: Monad a => Int  ->  a b  ->  a ()
replicateM_ n x sequence_ (replicate n x)



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
HASKELL
          ↳ COR

mainModule Monad
  ((replicateM_ :: Int  ->  Maybe a  ->  Maybe ()) :: Int  ->  Maybe a  ->  Maybe ())

module Monad where
  import qualified Maybe
import qualified Prelude

  replicateM_ :: Monad b => Int  ->  b a  ->  b ()
replicateM_ n x sequence_ (replicate n x)


module Maybe where
  import qualified Monad
import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False

The following Function with conditions
take n vx
 | n <= 0
 = []
take vy [] = []
take n (x : xs) = x : take (n - 1) xs

is transformed to
take n vx = take3 n vx
take vy [] = take1 vy []
take n (x : xs) = take0 n (x : xs)

take0 n (x : xs) = x : take (n - 1) xs

take1 vy [] = []
take1 wx wy = take0 wx wy

take2 n vx True = []
take2 n vx False = take1 n vx

take3 n vx = take2 n vx (n <= 0)
take3 wz xu = take1 wz xu



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
HASKELL
              ↳ LetRed

mainModule Monad
  ((replicateM_ :: Int  ->  Maybe a  ->  Maybe ()) :: Int  ->  Maybe a  ->  Maybe ())

module Maybe where
  import qualified Monad
import qualified Prelude


module Monad where
  import qualified Maybe
import qualified Prelude

  replicateM_ :: Monad b => Int  ->  b a  ->  b ()
replicateM_ n x sequence_ (replicate n x)



Let/Where Reductions:
The bindings of the following Let/Where expression
xs
where 
xs  = x : xs

are unpacked to the following functions on top level
repeatXs xv = xv : repeatXs xv



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
HASKELL
                  ↳ NumRed

mainModule Monad
  ((replicateM_ :: Int  ->  Maybe a  ->  Maybe ()) :: Int  ->  Maybe a  ->  Maybe ())

module Monad where
  import qualified Maybe
import qualified Prelude

  replicateM_ :: Monad b => Int  ->  b a  ->  b ()
replicateM_ n x sequence_ (replicate n x)


module Maybe where
  import qualified Monad
import qualified Prelude



Num Reduction: All numbers are transformed to thier corresponding representation with Pos, Neg, Succ and Zero.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
HASKELL
                      ↳ Narrow

mainModule Monad
  (replicateM_ :: Int  ->  Maybe a  ->  Maybe ())

module Maybe where
  import qualified Monad
import qualified Prelude


module Monad where
  import qualified Maybe
import qualified Prelude

  replicateM_ :: Monad b => Int  ->  b a  ->  b ()
replicateM_ n x sequence_ (replicate n x)



Haskell To QDPs


↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
QDP
                          ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_foldr(xw5, Succ(xw3000), Just(xw40), h) → new_foldr(xw5, xw3000, Just(xw40), h)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: